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Evidence from direct numerical simulations and from a recent weakly nonlinear 
theory is presented which shows that the weakly nonlinear results of Daudpota, Hall 
& Zang (1988) make incorrect predictions for the influence of the Tollmien- 
Schlichting wave on the Dean vortex. 

1. Introduction 
Very mildly curved channel flows can support both unstable TollmienSchlichting 

(TS) waves and Dean vortices. Daudpota, Hall & Zang (1988) (hereinafter referred 
to as DHZ) developed a weakly nonlinear interaction theory to study the interaction 
of TS waves with Dean vortices at finite Reynolds number. They employed a 
multiple scale version of the Stuart (1960) and Watson (1960) approach to derive two 
coupled Landau equations for the perturbation amplitudes of the Dean vortices and 
TS waves. Here we present evidence that shows that their results are in error with 
respect to the influence of the TS wave on the Dean vortex. In  52, we enumerate the 
nomenclature and introduce the coupled Landau equations which describe the 
evolution of the disturbances. In 53, we illustrate some discrepancies between the 
results of direct numerical simulations (DNS) and the predictions of DHZ, and in 54, 
we present the results of a new weakly nonlinear theory and show that its results are 
consistent with the DNS. 

2. Basic nomenclature 
The incompressible flow in a mildly curved channel is driven by an azimuthal 

pressure gradient. The flow is assumed to be periodic in the axial and azimuthal 
directions ; any disturbances evolve in time. The radial, or wall-normal direction, 
extends from an inner radius, ri ,  to an outer radius, T,. Here we non-dimensionalize 
all spatial coordinates with the channel half-width h, velocities with the bulk velocity 
0, and pressure with p P ,  where p is the density. The temporal scale is h/U.  The 
Reynolds number is defined as 

Oh 
R e = - - ,  

V 

where v is the kinematic viscosity. A curvature parameter, h = l-rJr,, is close to 
zero for the mildly curved channels considered here. Note that DHZ non- 
dimensionalize differently but their results can be easily converted into this system. 
The linear TS waves are assumed to be proportional to expiKO where 0 is the 
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azimuthal coordinate and K is the azimuthal wavenumber. The linear Dean vortices 
are proportional to exp $32, where z is the axial coordinate and /3 is axial wavenumber. 
The nonlinear structure of these disturbances also contain their harmonics. 

DHZ use the solutions of the linearized equations as forcing terms in the weakly 
nonlinear expansions of the TS waves and the Dean vortices. In a manner similar to 
Watson (1960), they use solvability conditions at third order in the amplitude to 
determine the coefficients of a set of coupled Landau equations truncated at third 
order. Letting A represent an amplitude of the TS disturbance and B an amplitude 
of the Dean disturbance, one can write the real equations: 

A / A  = uo, + ul, oA2 + ao, B2, 

d/B = b0,0+b, ,oA2+bo, lB2.  (2) 

(1) 

Here uo,o and bo,o are the linear growth rates of the TS and Dean disturbances, 
respectively. The coefficients al, govern the self-interaction of the 
disturbances with themselves. The coefficients uo, and bl, determine the effect that 
one disturbance has on the other. 

and bo, 

3. Comparison with DNS 
Equations (1)  and (2) admit four possible steady-state solutions : the trivial 

solution, finite A with B = 0, finite B with A = 0, and a combined state with finite 
values of both A and B. The behaviour of the solutions in the vicinity of these 
equilibrium points is easily checked via DNS. 

Singer & Zang (1989) used a numerical simulation code which employed a curved 
channel variant of the method described by Zang & Hussaini (1986) with the 
nonlinear terms in skew-symmetric form (Zang 1991). They extensively studied the 
situation where Re = 6291.67, h = 2.189 x K = 74257, and p = 4.508. The 
constants in ( 1 )  and (2) obtained from DHZ are given in table 1. The linear growth 
rates, uo, and bo, o ,  are positive while the self-interaction coefficients, al, and bo, 1, are 
negative. This implies that either disturbance alone in the flow will evolve towards 
an equilibrium state. The negative value of uo, indicates that the Dean vortex tends 
to stabilize the TS wave, while the positive value of bl ,o  means that the presence of 
the TS wave tends to destabilize the Dean vortex. Clearly, if both types of 
disturbance are in the flow initially, the theory predicts that the TS wave will decay, 
while the Dean vortex will ultimately go to its equilibrium state. 

Four different types of initial conditions were used in the DNS of Singer & Zang 
(1989). In one case, the initial conditions included only a TS wave. An approximately 
periodic state was reached with an amplitude that differed from that predicted by 
the theory by approximately 15 %. A second case includcd only a Dean vortex. An 
equilibrium state was reached with an amplitude that was 5 %  different than that 
predicted by the theory. These two simulations suggested that the self-interaction 
coefficients are essentially correct. In  order to check the other interaction coefficients, 
both types of disturbances were included in the initial conditions. Starting 
a calculation with the amplitude of the Dean vortex approximately at its equi- 
librium level and the amplitude of the TS wave at  approximately h its predicted 
equilibrium value, the TS wave decayed and the Dean vortex evolved towards its 
equilibrium state. This was in accordance with the theory. However, when the 
amplitude of the TS wave was increased to its predicted equilibrium value, the 
Dean vortex decayed and the TS wave evolved towards its equilibrium value. This 
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ao, 0 a1.0 ao, 1 bo, 0 bl, 0 bo, 1 
DHZ 1.20 x 10-4 -8.85 - ioiooo 3.97 x 10-5 1.23 x 1 0 5  - 8470 
SEZ 1.21 x 10-4 - 8.25 -95000 3.97 x 10-5 - 482 - 7640 

TABLE 1. Comparison of Landau coefficients for Re = 6291.67, h = 2.189 x K = 74257, and 
B = 4.508 

was in direct conflict with the theory of DHZ. Another simulation was performed 
with the same initial conditions, but the Dean vortex was artificially maintained at  
its original amplitude. In this case, the TS wave again decayed. This suggested that 
while uo, 1, the coefficient that controls the effect of the Dean vortex on the TS wave, 
has at least the proper sign, bl, o, the coefficient that governs the effect of the TS wave 
on the Dean vortex, is wrong. Additional simulations with different parameters also 
supported this conjecture. 

4. Comparison with a new theory 
Recently Singer, Erlebacher & Zang ( 1992) reformulated the weakly nonlinear 

theory for curved channel flow using the perturbation approach of Herbert (1980, 
1983). The results of this theory were then used to resolve the discrepancy between 
DHZ and Singer & Zang (1989). As seen in table 1, the theories of Singer et ul. (1992) 
and DHZ produced similar values for all the coefficients except b l ,o ,  the coefficient 
which was considered suspect in the previous section. Another case with different 
flow parameters also isolated bl,o as the only coefficient which had a significantly 
different value. The results of the theory of Singer et al. (1992) were checked 
extensively with direct numerical simulations and in all cases there was at least 
qualitative agreement. 

5. Conclusions 
An extensive comparison of the results of the weakly nonlinear theory of DHZ 

with both DNS and the weakly nonlinear theory of Singer et al. (1992) indicates that 
there is an error in the results of DHZ. This error manifests itself in the coefficient bl, ,,, 
which governs the effect of a small-amplitude TS wave on a Dean vortex. Even the 
qualitative behaviour of the disturbances can be significantly altered by this error, 
hence we recommend that the results of DHZ not be used to verify other theories as 
was suggested by Bennett, Hall & Smith (1991). 
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